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Introduction Results

% Normative models (NMs) construct reference charts for population-wide distributions of “u Spectral vs. conventional (direct) normative modeling;:
a biological phenotype. Similar to growth charts assessing a child's height based on their age
and sex, normative brain charting is a framework for modeling variations in structural brain
phenotypes, such as cortical thickness. Previous research has demonstrated NM's efficacy in
accurately capturing the heterogeneity of normative deviations in brain structure [1|.
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= . S “ Spectral NM eradicates the necessity for retraining the model when encountering new
B Sl queries, thus removing the requirement for repeated processing of imaging data to gain
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“ After training spectral NMs, we conducted a comprehensive evaluation of their ability

“» Normative charting of brain MRI data holds the potential to yield insightful spatial to infer norms in comparison to a direct model.

estimates of variations in cortical phenotypes |2|. Nevertheless, methodological limitations have

thus far impeded the development of NMs with high spatial precision |3]. . Three alternative families of spatial queries were tested:
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The establishment of a normative framework to detect subtle spatial nuances remains an R S A
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“ To establish and evaluate our normative reference models, we combined data from three
distinct Human Connectome Project (HCP) cohorts to cover the human lifespan (HCP > Quantitative evaluations:
Development, Young Adult, and Aging), comprising 2,473 individuals (54.7% female) aged 5 to
100. Cortical thickness was used as the normative phenotype of interest. Global Regional High-resolution
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% Computing high-resolution NMs is challenging due to the dimensionality of the feature | T ‘0 oo @@ S ] @Q
space (thousands of vertices on the surface mesh). Low-dimensional encoding of cortical ' 5 “ 5 a& Q&

ph.enotypes can .enable t.he d.evelopment of computz?tlonall}./ tractab.le hlgh—r.esolutlon NMS.. To Bl Y s x-0) (N D i o) G G
this end, we utilized brain eigenmodes [4] as basis functions for information reconstruction. ‘ ‘ & % & @
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Different normative models

Brain eigenmodes
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“» Eigenmodes were utilized as basis for normative reconstruction via graph signal filtering |5]. CO n CI U d l ng re m arks
Signal Reconstruction

& We present a novel approach for high-resolution normative modeling via pre-trained

‘ ‘ > ‘ ‘ spectral NMs constructed from brain eigenmodes.

& Spectral NMs can accurately estimate normative ranges.

@ @ s @ @ & Obviates the necessity to fit separate models for distinct spatial queries.
& Opens new avenues for precision lifespan human brain charting
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“». Thickness loading on each eigenmode formed a distinct spectral phenotype of the cohort. , * * , ’%\ , ,

“» Separate hierarchical Bayesian regression NMs were trained to independently model spectral
cortical thickness phenotypes as a function of age and sex while accounting for scanner /site
effects.
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“» This facilitated the generalization of pre-trained reference NMs to unseen spatial normative
queries.
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