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Synopsis

Neuroimaging-derived brain phenotypes can be used to identify individuals and predict behavior. We investigated the prediction and
identification performance of brain structure and connectivity phenotypes derived from structural, functional and diffusion MRI. Five
behavioral domains were predicted: cognition, illicit substance use, tobacco use, personality-emotion traits, and mental health. We
arranged the phenotypes on a two-dimensional prediction-identification landscape. Functional connectivity performed better at
prediction than identification, whereas the converse was found for curvature and other structural phenotypes. Structural connectivity
performed well for both tasks. High-resolution measures outperformed atlas-based counterparts. Our work can aid brain phenotype
selection in future neuroimaging studies.

Introduction

Multimodal neuroimaging provides the ability to noninvasively measure brain phenotypes such as cortical architecture, topography, function, and
connectivity. A major goal in neuroscience is to establish whether these phenotypes predict individual variation in human behaviors and cognitive
performance’?3, We refer to this as behavior prediction. Functional connectivity (FC) is known to predict individual variation in fluid intelligence?,
sustained attention®, and a myriad of other behaviors®. In contrast, fewer studies have investigated behavior prediction with structural connectivity

(SC) derived from diffusion MRI”.

A complementary and more recently investigated goal involves determining whether neuroimaging-derived phenotypes can identify specific
individuals from a group of others, which is referred to as individual identification, otherwise known as neural fingerprinting®. Individual variability in
FC is sufficiently large to enable individual identification based on an individual's unique FC fingerprint*219 However, it is unclear whether SC
fingerprints'" or alternative neuroimaging-derived measures are more unique to individuals than FC and thus would enable improved individual
identification.

The aim of this study was to compare the identification and behavior prediction performance of neuroimaging-derived phenotypes, including FC, SC
and various measures of cortical structure and architecture. We also investigate whether high-resolution connectomes and cortical structure
measured at the resolution of vertices/voxels provide improved identification and prediction performance, compared to their atlas-based
counterparts. Figure 1 shows an overview of the study design and summarizes the key neuroimaging phenotypes investigated.

Methods

We analyzed neuroimaging and behavioral data acquired from 1000 individuals participating in the Human Connectome Project (HCP)'2. These
individuals formed a test group. MRI scans were repeated in 42 of these individuals, providing a retest group. Diffusion MRI and probabilistic
tractography was used to map structural connectomes. Functional connectomes were mapped using resting-state functional MRI. Connectomes
were mapped at the resolution of cortical surface vertices (~32,000 nodes per hemisphere) and regions comprising an established atlas (180 nodes
per hemisphere)'3. Additionally, cortical surface maps of: i) cortical thickness, ii) cortical curvature, iii) sulcal depth, and iv) myelin were sourced
from the HCP. These maps were also resampled to the atlas regions. Hence, each individual was associated with two connectomes and four surface
maps, each of which was mapped at the resolution of vertices and regions, yielding 12 measures in total. For each measure, a similarity metric for
all test-test (1000 X 1000 ) and test-retest (1000 X 42) pairs of scans was computed.

Individual Identification: Each fingerprint in the retest group was matched to the fingerprint in the test group with which it was most similar. This is
yielded a one-to-one mapping between individuals in the retest and test groups. The fingerprint-predicted matching was compared to the ground
truth to determine the proportion of correctly matched individuals in the retest group, referred to as the identification accuracy. Given that multiple
phenotypes yielded 100% accuracy, identification performance was also measured using the effect size difference (Cohen’s d) between the
distribution of i) true pair similarities (42 pairs), and ii) false pair similarities (42 X 999 pairs). Hence, higher effect size differences translated to
higher precision in identification.

Behavior Prediction: Independent component analysis (ICA) was used to decompose 109 behavioral measures'# to five core continuous
dimensions, characterizing cognitive performance, illicit substance use, tobacco use, personality-emotion traits, and mental health. Fluid
intelligence was also considered to facilitate comparison with existing studies. The variance component model (VCM)'® was used to evaluate the
extent to which each neuroimaging measure could explain individual variation in each behavioral dimension. Measures that explained greater
individual variance were deemed to perform better. The similarity matrix for the VCM was computed by correlating each measure between pairs of
individuals.

Results

Individual Identification: We found that measures of cortical structure and architecture, such as curvature, are more accurate in fingerprinting
individuals than functional connectivity (Figure 2:A). Crucially, fingerprints derived from structural connectivity enabled the most accurate
identification of individuals. Additionally, the vertex-based variants that were computed in higher resolution generally improved identification
performance to a great extent.

Behavior Prediction: For behavior prediction, Figure 2:B shows the variance explained in VCM averaged across the independent components of
cognition and behavior sampled with a jackknife resampling method'®. This can be interpreted as an overall rating of the applicability of neural
phenotypes to a wide range of cognitive and behavioral characteristics. We found that connectomic measures in general, especially at the higher
resolution, better explained individual variation in behavior. (See Figure 3 for a detailed breakdown of behavior interpretation components.) A
measure of individual uniqueness was also computed by regressing out the false pair similarities from the true pair similarities (Figure 4).

Discussion and Conclusion



Arranging neuroimaging-derived phenotypes on a two-dimensional prediction-identification landscape revealed a dichotomy between phenotypes
suited to identifying individuals and phenotypes that could explain individual variation in behavior (Figure 5). High-resolution structural
connectomes performed well at both tasks. When comparing different resolutions, we found that vertex-based phenotypes, in general, improve
identification and prediction performance over their atlas-based counterparts for nearly all behavioral domains and phenotypes (refer to Figure 3).
This suggests that a higher resolution captures additional detail to enable greater task accuracy (Figure 4).
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Figure 1: Study overview. A) Neuroimaging-derived phenotypes arranged according to cortical structure (bottom) and connectivity (top). B)
Schematic of methodology. First, a neuroimaging-derived phenotype is selected. Second, the selected phenotype is either mapped at the resolution
of voxels/vertices, or a regional atlas. Third, the selected phenotype is represented as a fingerprint for each individual. Finally, the similarity in
fingerprints is computed between pairs of individuals. The similarity matrix is used for individual identification and behavior prediction.
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Figure 2: Performance of neuroimaging-derived phenotypes in individual identification and prediction of individual variation in behavior. A)
Individual identification is the effect size (Cohen'’s d) difference of the phenotypic similarity of the true pairs compared to the false pairs. B) Average
variance explained by VCM for components of cognition and behavior. C) A and B combined to yield a two-dimensional prediction-identification
landscape. Phenotypes measured at the resolution of vertices (stars) and atlas-based regions (circles) are shown.

"i":...-ii
IIJJJ"
,.u_...u
;.Jn.id
et
;aa_JJJ

Figure 3: Behavior interpretation. A) Variance explained by VCM for the fluid intelligence measure from HCP dataset which was used in previous
functional fingerprinting studies. B) Detail of VCM results for all components of cognition and behavior (cognition, illicit substance use, tobacco use,
personality-emotion, and mental health). The line plots present the prediction-identification landscape for each phenotype. Note that the horizontal
and vertical axes are shared in all plots.
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Figure 4: Measures of regressed uniqueness (RU). These measures are derived by regressing out false pair similarities from the true pair similarities
in functional and structural connectomes. The spatial overlap between SC and FC results present how highly unique FC patterns arise from the
underlying unique SC patterns. The intricate detail provided in the higher resolution contains information such as intensity and gradual change
which is lost in the pixelated atlas-level presentation.
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Figure 5: Neuroimaging-derived phenotypes arranged in a two-dimensional space, where the horizontal and vertical axes, quantify performance in
behavior prediction (variance explained) and individual identification (Cohen's d), respectively. Structural connectivity performs well for both tasks,
whereas a dichotomy is evident for the other measures. This shows a trade-off where high performance in one dimension results in low
performance in the complementing dimension.
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